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Breakdown of Hemiorthothioamide Tetrahedral 
Intermediates' 

S u m m a r y  The sulfhydrolyses of 2,N-dimethyl-1,3-oxazol- 
inium fluorohorate I 1) and N,N- dimethyliminobutyrolacto- 
nium fluoroborate with anhydrous sodium hydrosulfide in 
solvent acetone at  -78 "C were found to involve the prefer- 
ential cleavage of the C-N bond rather than the C-0  bond. 

Sir. Tetrahedral intermediates play a central role in a wide 
variety of eniymatic and nonenzymatic reactions.' The in- 
volvement of such intermediates in enzymatic reactions, e.g. 
those involving tu-chymotrypsin, carboxypeptidase, and 1) - 
sozyme,' has been deduced by analogy with nonenzymatic 
intermolecular as well as intramolecular model reactions in- 
volving similar tetrahedral intermediates. Since the pioneering 
work of Bender,J transient tetrahedral intermediates have 
been invoked in the lytic reactions of carboxylic esters,' lac- 
tones,6 amides,: thiolo8 and thiono  ester^,^ thioamides,"' and 
amidines.l' Tetrahedral intermediates have been detected 
spectroscopically.*' i rapped.' or isolated.14 We report on the 
kinetic breakdown of hemiorthothioamide tetrahedral in- 
termediates of the type RC(SH)(OR)(NR') and on the first 
intramolecular 0 + N thionacyl transfer. These intermedi- 
ates, which, i r i  principle. may form during the alcoholbsis of 
thioamides arid aminolysis of thiono esters, were generated 
directly in an aprotic solvent (acetone) from anhydrous so- 
dium hydrosulfide and two model imino ether salts i l  and 
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TLC analysis (at room temperature) of the reaction mixture 
obtained from equimolar amounts of 2,N-dimethyl-1,3-oxa- 
zolinium fluoroborate16 (1) and anhydrous sodium hydro- 
sulfide" in acetone a t  -78 "C revealed 4a (Scheme I) as the 
only organic product (2Rl 0.48, CHC1:j-MeCN (1:1 v/v)): 
IR(CHC13) 3500-3200,1510 cm-l; NMR (CDC13) 6 2.69-2.73 

OH), 4.05,4.35 (4 H, m, OCH2CH2N). However, TLC analysis 
of the latter reaction mixture after low-temperature trapping 
(AcCl/pyridine, -78 "C) showed 3b as the major product along 
with 4b (3b/4b -9:l). 3b: Rf 0.32, CHCI:i-MeCN (3:l v/v); IR 
(CHCI:J 1660, 1280 cm-l; NMR (CDCl:>) 6 2.20. 2.25 (3 H,  2 

3.83-4.05 (2 H ,  m, CH2N), 4.76-4.95 (2  H, m, CH20). 4b: R f  
0.61, CHC1:j-MeCN (3:l v/v); IR (CHCl:I) 1760, 1540, 1300 
cm-'; NMR (CDCl3) 6 2.12 (3 H, s, CH;$O), 2.71. 2.78 (3 H,  
2 s, CH3C=S), 3 40, 3.54 (3 H ,  2 s, CH?N). 4.36-4.54 (4 H,  m, 
OCH2CH.N). At room temperature, the reaction of 1 and 
NaSH led to 4a, along with 2a (4a/2a ratio -3:2). 2a: Rf  0.35, 
CHClx-MeCN (1:l v/v); IR (CHC12) 3450, 2520,1640 cm-l; 

2 s, CH:$O), 2.67-2.91 (2 H, m, CH2Ni, 2.91, 3.05 ( 3  H, 2 s. 
CH:{N), 3.40-3.66 ( 2  H, m, CH2S).I8 

TIL analysis of the reaction mixture from equimolar 
amounts of anhydrous NaSH and N,N-dimethylimino- 
butyrolactonium fluoroborate16 ( 5 )  in acetone at room tem- 
perature revealed 6a (Scheme 11) as the exclusive sulfur- 
containing component:'O Rl 0.46, CHCI:j-MeCN (1:l v/v); IR 
(CDC1:O 8400, 1525, 1395, 1280, 1050 cm--l: NMR (CDCI:3) 6 
1.72-2.24 (m. 2 H, CCH&). 2.96 (m. 2 H, CH&=S), 3.38 (s. 
3 H, NMe), 3.53 (s, 3 H, KMe), 3.74 (t,J = 6.5 Hz, 2 H. CH20). 
However. when the reaction was run at -78 "C and the mix- 
ture acetylated at  -78 " C  (AcCl/pyridine). compounds 7 and 
8b were the major detectable products. 7: R f  0.36, CHCL- 
MeCN (99.5:O.j v/v): IR (neat) 1460,1380, 1270,1180.920,740 
cm-]: NMR (CDC1:1) 6 2.36 ( 2  H, q,  J = 6.5 Hz. CCHzC). 3.10 

(3 H, 2 S, CH&=S). 3.38, 3.53 (3 H, 2 S, CH3N), 3.92 (1 H,  S ,  

S ,  CH:>CO), 2.72 (3 H, S, CH;&=S), 3.13,3.23 (3 H, 2 S, CH:jN). 

NMR (CDCI2) 6 1.34 (1 H, t, J = 8.0 Hz. SH), 2.08,2.13 (3 H ,  

( 2  H. t,  J = 6.5 Hz, CH?C=S). 4.70 ( 2  H, t. J = 6.5 Hz. 
CHzO). 

As shown in Scheme I, the nucleophilic attack on 1 a t  -78 
"C is exclusively at  (2-2, and the resulting transient tetrahedral 
intermediate TlO,"l under kinetic control, breaks down by 
cleavage of the Cz-N bond to yield 3a. The latter, at -78 "C, 
is efficiently trapped as the acetamide 3b; in the absence of 
an acetylating agent, as the temperature is increased from -78 
"C to room temperature, 3a undergoes an unprecedented in- 
tramolecular 0 -* N thionacyl transfer. most probably 
through the intermediate TIi1, to yield the more stable isomer 
da*22 

Similarly, the initially formed intermediate T?" 21 under- 
goes kinetic breakdown by cleavage of the CS-N bond (in 
preference to C2-0) to yield 7 and 8a (Scheme 11): after 
acetylation (-78 "C) the products are 7 and 8b. In the absence 
of acetylating agent at  room temperature the more stable 
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product 6a is formed, perhaps also through T2O. 
The breakdown of both tetrahedral intermediates TI0 and 

T2O may be rationalized on the basis of Deslongchamps' 
stereoelectronic theory for the breakdown of hemiorthoamide 
and hemiorthoester tetrahedral intermediates.'" The break- 
down of T1° may be envisioned through the initially formed 
pseudoaxial conformation 9 (Scheme 111), in which the 
cleavage of the C-N is facilitated by one primary (Le., the 
interaction of the orbitals of two antiperiplanar lone pairs (one 
from sulfur and one from oxygen) with the orbital of the C-N 
bond) and two secondary stereoelectronic effects.24 The 
scission of the C-0 bond, on the other hand, is subject to no 
primary (there is only one (sulfur) lone pair antiperiplanar to 
(2-0) but two eecmdary stereoelectronic effects.25 However. 
with increasing temperature the higher barrier to C-0 
cleavage is overcome through changes in ring conformations 
and/or inversion a t  N (9 - 10 - 1 1  -+ 12; Scheme 111), and 
the thermodynamically more stable product 4a is formed 
through conformations 10 and 12. T2O, on the other hand, is 
initially formed in the pseudoaxial conformation 13 (Scheme 

IV) in which the cleavage of neither C-0 nor C-N is assisted 
stereoelectronically (primary effect), even though each 
cleavage is subject to two secondary stereoelectronic effects.'6 
Conformation 13 may transform into 14 in which primary 
stereoelectronic assistance helps sever the C-N bond; the al- 
ternative conformations 15 and 16 which would allow scission 
of C-0 appear to be energetically unfavorable, presumably 
due to repulsive nonbonded interactions. 

While our findings are consistent with Deslongchamps' 
theory, it is conceivable that the breakdown of TIo, and of Tzn, 
may proceed partially or exclusively through the corre- 
sponding zwitterionic forms TI* and Tz*, which would arise 
through an' intra- or intermolecular transfer of the thiolic 
hydrogen to nitrogen.27 A definitive choice between the two 

modes of breakdown must await detailed measurements of 
the kinetics of intramolecular and intermolecular S - N 
proton transfer in aprotic solvents,zs such as acetone, and the 
determination and/or c a l c ~ l a t i o n ~ ~  of the lifetime of transient 
tetrahedral intermediates. We are currently exploring other 
experimental approaches for elucidating the mechanism of 
the sulfhydrolysis. 
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